ECONOMIC AND SOCIAL COMMISSION FOR ASIA AND THE PACIFIC AND WORLD METEOROLOGICAL ORGANIZATION

WRD/TC.43/5.1 Add. 1 18 January 2011

Typhoon Committee Forty Third Session 17 to 22 January 2011 Jeju, Republic of Korea

REPORT ON AMENDMENTS TO THE TYPHOON COMMITTEE OPERATIONAL MANUAL

(Item 5 of the Provisional Agenda)

Submitted by the Rapporteur

Introduction

1. The Typhoon Committee Operational Manual - Meteorological Component (TOM) has been reviewed and updated every year since its first issue in 1987. The 2010 edition was completed and posted on the WMO website in March 2010 in accordance with the approval of amendments to the previous issue by the 42nd session of the Typhoon Committee (25 to 29 January 2010, Singapore).

2. At the 42nd session, the Committee decided that the rapporteur of the Japan Meteorological Agency (JMA) would continue arrangements for updating the TOM. In this connection, on 15 September 2010, the rapporteur, Mr Masashi Kunitsugu, Head of the JMA National Typhoon Center invited the focal points of the meteorological component of the Members to provide proposals for updates to the TOM.

3. As of the end of December 2010, proposals for updates to the TOM had been submitted by the five focal points of Hong Kong - China, Japan, Macao - China, Malaysia and Thailand.

4. Proposed amendments to the TOM are attached as Annex 1 and given below are the major points of the amendments:

- Inclusion of guidelines for converting between various wind averaging periods in tropical cyclone conditions (Chapter 1 and a new appendix 1-A)
- Update of information on RADOB and SAREP reports (Chapter 2)
- Update of information on telecommunication network (Chapter 5)
- Update of information on technical specifications of radars in Japan, Macao China (Appendix 2-D)
- Update of outline of RSMC Tokyo tropical cyclone prediction models (Appendix 3-A)
- Update of information on operational typhoon track forecast methods of Hong Kong China (Appendix 3-B)
- Update of outline of HKO models (Appendix 3-E)
- Adding weather forecast area of Malaysia (4-B)
- Update of contact list of Hong Kong China, Japan and Malaysia (Appendix 5-A)
- Update of data distribution tables (Appendix 5-C)

Action Proposed

- 5. The Committee is invited to:
- (a) Note the information given in this document,
- (b) Review and approve the proposed amendments to the TOM attached as Annex 1 with necessary modifications.

Annex 1

Draft Amendments to the Typhoon Committee Operational Manual – Meteorological Component (TOM) proposed by the Members

Page	Line	Present Description	Proposed Amendment
Chapte	r 1		
		< <meaning of="" terms="">> Maximum sustained wind:</meaning>	Maximum sustained wind*: * For converting the wind speeds of different averaging periods such as 1-min, 2-min, 3-min and 10-min, Tropical Cyclone Programme of WMO recommends to follow the guidelines as shown in the Appendix 1-B. < <new as<br="" be="" document="" inserted="" to="">Appendix 1-B (see Annex 1-1)>></new>
Chapte	r 2		
8	8	< <ship and="" buoy="" observations="">> JPBN, JGQH, JDWX, JIVB and JCCX</ship>	JPBN and JGQH
8	12	JMA research vessels JGQH, JDWX, JIVB and JCCX	JMA research vessel JGQH
8	33	<< <i>Radar observations>></i> Reports will be coded in the RADOB code (FM 20-VIII)	Reports will be coded in the BUFR code (FM-94) with RADOB Template (TM316050) and/or the RADOB code (FM 20-VIII)
9	14	< <sarep reports="">> 2.4.2 SAREP reports</sarep>	< <to be="" by="" replaced="">> New document (see Annex 1-2)</to>
Chapte	r 3		
15	Table 3.3	< <list of="" other="" products="" rsmc="">> MTSAT-1R</list>	MTSAT-2
		(a) Surface data	(a) Surface data (TAC/TDCF)
		(b) Upper-air data	(b) Upper-air data (TAC/TDCF)
Chapte	r 4		
18	25	<> In the special case of SIGMET messages for tropical cyclones, an outlook should be included, giving information for up to 24 hours ahead concerning the expected positions of the centre of the tropical cyclone.	< <to be="" deleted="">></to>
18	40	, to be used in the preparation of the outlook part of the SIGMET messages for tropical cyclones	< <to be="" deleted="">></to>

Chapter			
21	Table	< <telecommunication>></telecommunication>	
	5.1	Beijing - Tokyo	Beijing - Tokyo
		Cable (MPLS), 1 Mbps TCP/IP	Cable (MPLS), TCP/IP
		Beijing 2 Mbps/Tokyo 3 Mbps	Beijing 3 Mbps/Tokyo 3 Mbps
21		Bangkok - Beijing	Bangkok - Beijing
		Cable, 9600 bps X.25	Cable (IPLC), 64 kbps, FTP protocol
21		Bangkok - Hanoi	Bangkok - Hanoi
		Cable, 1200 bauds	Cable (IPLC), 64 kbps, FTP protocol
21		Bangkok - Phnom Penh	Bangkok - Phnom Penh
		Internet, IP VPN	Internet (VPN)
21		Bangkok - Vientiane	Bangkok - Vientiane
		DDN, 64 kbps, FTP Protocol	Cable (DDN), 64 kbps, FTP protocol
22		Bangkok - Kuala Lumpur	Bangkok - Kuala Lumpur
		Cable (FR), 64 kbps/CIR 16	Cable (IP-VPN), 64 kbps, socket
22		Bangkok - Singapore	Bangkok - Singapore
22		Cable (FR), 16 kbps	Cable (IP-VPN), 64 kbps, socket
Appendi	v 2 A		
32	23	< <list observations="" of="" surface="">></list>	
52	23	Thailand	Thailand
		432, 455, 456	432, 453, 456
Appendi		432, 455, 450	432, 433, 430
	х 2-р		
33		< <list observations="" of="" upper-air="">></list>	< <to be="" by="" replaced="">></to>
A			New document (see Annex 1-3)
Appendi	x 2-D		
40-42		< <technical japan="" of="" radars,="" specs="">></technical>	< <to be="" by="" replaced="">></to>
			New document (see Annex 1-4)
43		<< Technical Specs of Radars, Macao,	< <to be="" by="" replaced="">></to>
		China>>	New document (see Annex 1-5)
Appendi			
60	33	< <schedule and<="" mtsat="" observations="" of="" td=""><td><<to be="" by="" replaced="">></to></td></schedule>	< <to be="" by="" replaced="">></to>
		Disseminations>>	Visible imagery of full earth's disk of
		Technical specification of LRIT is	normalized geostationary projection has
		given in JMA LRIT Mission	been disseminated via LRIT since 1 July,
		Specification Implementation (Issue	2010. Technical specification of LRIT is
		6, 1 Jan. 2003).	given in JMA LRIT Mission Specification
			Implementation (Issue 7, 1 Jul. 2010).
61-66		< <mtsat-1r and="" dissemination<="" imaging="" td=""><td><<to be="" by="" replaced="">></to></td></mtsat-1r>	< <to be="" by="" replaced="">></to>
		Schedule>>	New document (see Annex 1-6)
		Fig 2-E	
Appendi	x 2-F		
68	footn	< <satellite facilities="" imagery="" receiving="">></satellite>	< <to be="" by="" replaced="">></to>
	ote	* Macao, China receives AQUA	* Macao, China receives AQUA (MODIS),
		(MODIS), FY-1D (CHRPT), FY-2C&2D	FY-1D (CHRPT), FY-2 (S-VISSR) and TERRA
		(S-VISSR) and TERRA (MODIS).	(MODIS).

Appendix 3		
70-71	<< Outline of RSMC Tokyo - Tropical	< <to be="" by="" replaced="">></to>
	Cyclone Prediction Models>>	New document (see Annex 1-7)
Appendix 3		
77	<< Operation Typhoon Track Forecast	< <to be="" by="" replaced="">></to>
	Methods, Hong Kong, China>>	New document (see Annex 1-8)
Appendix 3	-E	
135	<< Outline of HKO - Operational Regional	< <to be="" by="" replaced="">></to>
	Spectral Model>>	(1) Operational Regional Spectral Model
	Operational Regional Spectral	New document (see Annex 1-9)
	Model	(B) From FY-2E meteorological satellite of
	(B) From FY-2C meteorological	СМА
	satellite of CMA	FY-2E IR1 brightness temperature data
	FY-2C IR1 brightness	
	temperature data	
137-		< <to be="" by="" inserted="">></to>
138		New document (see Annex 1-10)
Appendix 5	-A	-
154	< <hong china="" kong,="">></hong>	
	(Attn. Mr. Edwin S.T. Lai)	(Attn. Mr. K.C. Tsui)
	stlai@hko.gov.hk	E-mail: kctsui@hko.gov.hk
154	< <japan>></japan>	
	(Director: K. Takase)	(Director: A. Muranaka)
155	< <malaysia>></malaysia>	
	Director: Mr. Low Kong Chiew	Director: Mr. Saw Bun Liong
	Tel.: (+60) (3) 7957 8116	Tel.: (+60) (3) 7967 8116
	(Office hours)	(+60) (3) 7967 8119
	E-mail: cfo@kjc.gov.my	E-mail: <u>cfo@met.gov.my</u>
Appendix 5-	-C	
161-	< <collection and="" distribution="" of<="" td=""><td><<to be="" by="" replaced="">></to></td></collection>	< <to be="" by="" replaced="">></to>
162	Information>>	New document (see Annex 1-11)
Appendix 5	5	
166	< <table abbreviated="" headings="" of="">></table>	< <to be="" by="" replaced="">></to>
100	RADB reports (RADB)	Radar reports
Appendix 6-		Radarrepons
168	<pre></pre>	
	iv) hourly radar observations	iv) hourly radar observations (BUFR and/or
	(RADOB code)	RADOB codes)
170	RADOB (PART A)	RADAR
170	RADOB	RADAR RADAR reports
		RADAR TEPOILS

GUIDELINES FOR CONVERTING BETWEEN VARIOUS WIND AVERAGING PERIODS IN TROPICAL CYCLONE CONDITIONS

This note is based on recommendations from Harper et al. (2010) and extracts from Knaff and Harper (2010), providing advice on why, when and how "wind averaging conversions" can be made.

a) Why Convert Wind Speeds?

From the observational perspective, the aim is to process measurements of the wind so as to extract an estimate of the **mean** wind at any time and its **turbulence** properties. From the forecasting viewpoint, the aim is, given a specific wind speed metric derived from a process or product, to usefully predict other metrics of the wind. Typically these needs revolve around the concept of the mean wind speed and an associated peak gust wind speed; such that the statistical properties of the expected level of wind turbulence under **different exposures** can be used to permit useful conversions **between peak gust wind speed** estimates.

b) When to Convert Wind Speeds?

Wind speed conversions to account for varying averaging periods only apply in the context of a maximum (peak gust) wind speed of a given duration observed within some longer interval. Simply measuring the wind for a shorter period of time at random will not ensure that it is always higher than the mean wind (given that there are both lulls and gusts). It is important that all wind speed values be correctly identified as an estimate of the **mean wind** or an estimate of a **peak gust**.

Once the mean wind is reliably estimated, the random effects of turbulence in producing higher but shorter-acting wind gusts, typically of greater significance for causing damage, can be estimated using a "gust factor". In order for a gust factor to be representative, certain conditions must be met, many of which may not be exactly satisfied during a specific weather event or at a specific location:

- Wind flow is turbulent with a steady mean wind speed (statistically stationary);
- Constant surface features exist within the period of measurement, such that the boundary layer is in equilibrium with the underlying surface roughness (exposure);
- The conversion assumes the mean wind speed and the peak gust wind speed are at the same height (e.g. the WMO standard observation height +10 m) above the surface.

c) How to Convert Individual Point-Specific Wind Speeds

Firstly, the mean wind speed estimate V should be explicitly identified by its averaging period T_o in seconds, described here as V_{To} , e.g.

- V_{600} is a 10-min averaged mean wind estimate;
- V_{60} is a 1-min averaged mean wind estimate;
- V_3 is a 3-sec averaged mean wind estimate.

Next, a peak gust wind speed should be additionally prefixed by the gust averaging period τ , and the time period over which it is observed (also termed the **reference period**), described here as V_{τ,τ_0} , e.g.

 $V_{60,600}$ is the highest 1-min mean (peak 1-min gust) within a 10-min observation period; $V_{3,60}$ is the highest 3-sec mean (peak 3-sec gust) within a 1-min observation period.

The "gust factor" $G_{,To}$ then relates as follows to the mean and the peak gust:

$$V_{\tau,To} = G_{\tau,To} V$$
,

where the (true) mean wind V is estimated on the basis of a suitable sample, e.g. V_{600} or V_{3600} .

On this basis, Table 1 provides the recommended near-surface (+10 m) conversion factors $G_{,\tau o}$ between typical peak gust wind averaging periods, which are a strong function of the exposure class because the turbulence level varies depending on the surface roughness. Table 1 only provides a range of indicative exposures for typical forecasting environments and Harper et al. (2010) or WMO (2008) should be consulted for more specific advice regarding particular types of exposures - especially if it is intended to calibrate specific measurement sites to "standard exposure".

Table 1	Wind speed	I conversion	factors t	for tropical	cyclone	conditions	(after Har	per et al. 20	010).
i abio i	winna opooo	00111010101011	i aotoro i	ioi liopioui	0,00000	oonantionio	(antor riar	poi ot ui. <u>-</u>	

Exposu	ire at +10 m	Reference		Gu	ust Factor G	, To	
Class	Description	Period		Gus	st Duration	τ (S)	
Class	Description	$T_o(s)$	3	60	120	180	600
		3600	1.75	1.28	1.19	1.15	1.08
	Develop	600	1.66	1.21	1.12	1.09	1.00
In-Land	Roughly open - terrain -	180	1.58	1.15	1.07	1.00	
	terrain	120	1.55	1.13	1.00		
		60	1.49	1.00			
		3600	1.60	1.22	1.15	1.12	1.06
	Offshore	600	1.52	1.16	1.09	1.06	1.00
Off-Land	winds at a	180	1.44	1.10	1.04	1.00	
	coastline	120	1.42	1.08	1.00		
		60	1.36	1.00			
		3600	1.45	1.17	1.11	1.09	1.05
	Onshore	600	1.38	1.11	1.05	1.03	1.00
Off-Sea	winds at a	180	1.31	1.05	1.00	1.00	
	coastline	120	1.28	1.03	1.00		
		60	1.23	1.00			
		3600	1.30	1.11	1.07	1.06	1.03
	5 00 lum	600	1.23	1.05	1.02	1.00	1.00
At-Sea	> 20 km	180	1.17	1.00	1.00	1.00	
	Unanore	120	1.15	1.00	1.00		
		60	1.11	1.00			

Some example applications of the above recommendations are:

- To estimate the expected "off-land" 3-sec peak gust in a 1-min period, multiply the estimated "off-land" mean wind speed by 1.36
- To estimate the expected "off-sea" 3-sec peak gust in a 10-min period, multiply the estimated "off-sea" mean wind speed by 1.38
- To estimate an "at-sea" 1-min peak gust in a 10-min period, multiply the estimated "at-sea" mean wind speed by 1.05

Note that it is not possible to convert from a peak gust wind speed back to a **specific** time-averaged mean wind – only to the **estimated true mean** speed. Hence to estimate the "off-sea" mean wind speed given only a peak observed gust of 1-min duration (r = 60 s) measured in a 10-min period ($T_o = 600$ s), multiply the observed 1-min peak gust by (1/1.11) = 0.90. This does not guarantee that the estimated mean wind will be the same as the 10-min averaged wind at that time but, because the 10-min average is normally a reliable estimate of the true mean wind, it will likely be similar. In all cases, measurement systems should aim to reliably measure the mean wind speed and the standard deviation using a sample duration of not less than 10-min (WMO 2008), i.e. V_{600} . Additional shorter averaging periods and the retaining of peak information should then be targeted at operational needs.

d) Converting Between Agency Estimates of Storm Maximum Wind Speed Vmax

This is a slightly different situation from converting a point specific wind estimate because the concept of a storm-wide maximum wind speed *Vmax* is a metric with an associated spatial context (i.e. anywhere within or associated with the storm) as well as a temporal fix context (at this moment in time or during a specific period of time). While it may be expressed in terms of any wind averaging period it remains important that it be unambiguous in terms of representing a mean wind or a peak gust. Agencies that apply the WMO standard 10-min averaged *Vmax* wind have always applied a wind-averaging conversion to reduce the maximum "sustained" 1-min wind value (a 1-min peak gust) that has been traditionally associated with the Dvorak method (Dvorak 1984, Atkinson and Holliday 1977)1. As noted in the previous section, it is technically not possible to convert from a peak gust back to a specific time-averaged mean wind – only to the estimated true mean wind speed. However, in Harper et al. (2010) a practical argument is made for nominal conversion between $Vmax_{60}$ and

¹ As detailed in Harper et al. (2010), this traditional assumption is without a firm basis.

Vmax₆₀₀ values via an hourly mean wind speed reference, and the recommendations are summarised in Table 2.

It can be noted that the recommended conversion for at-sea exposure is about 5% higher than the "traditional" value of 0.88 (WMO 1993), which is more appropriate to an off-land exposure. This has special implications for the Dvorak method because "at sea" is the typical exposure of interest where such conversions have been traditionally applied.

Table 2 Conversion factors between agency estimates of maximum 1-min and maximum 10-min averaged tropical cyclone wind speed Vmax. (after Harper et al. 2010).

Vmax ₆₀₀ =K Vmax ₆₀	At-Sea	Off-Sea	Off-land	In-Land
K	0.93	0.90	0.87	0.84

e) References

- Atkinson, G.D., and C. R. Holliday, 1977: Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the Western North Pacific. Mon. Wea. Rev., 105, 421-427.
- Dvorak, V.F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep.
- NESDIS 11, National Oceanic and Atmospheric Administration, Washington, DC, 47 pp. Knaff, J.A. and B.A. Harper, 2010: Tropical cyclone surface wind structure and wind-pressure relationships. In: Proc. WMO IWTC-VII, World Meteorological Organization , Keynote 1,La Reunion, Nov.
- Harper, B.A.,, J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. World Meteorological Organization, TCP Sub-Project Report, WMO/TD-No. 1555.
- WMO 1993: Global guide to tropical cyclone forecasting. Tropical Cyclone Programme Report No. TCP-31, World Meteorological Organization, WMO/TD No. 560, Geneva.
- WMO 2008: Guide to meteorological instruments and methods of observation. World Meteorological Organization, WMO-No. 8, 7th Ed, 681pp.

2.4.2 SAREP reports

SAREP reports (Part A) are disseminated eight times a day in the following cases from the RSMC Tokyo - Typhoon Center to Typhoon Committee Members through the GTS under the heading of IUCC10 RJTD in the BUFR code (FM 94):

- when a tropical cyclone of TS intensity or higher is located in the responsible area of the RSMC Tokyo Typhoon Center; when a tropical depression existing in the responsible area is forecasted to (i)
- (ii) (iii) have an intensity of TS or higher within 24 hours; or(iii) when an area of wind speed of 34 knots or higher caused by a tropical
- cyclone is forecasted to be in the responsible area within 24 hours.

LIST OF STATIONS FROM WHICH ENHANCED UPPER-AIR OBSERVATIONS ARE AVAILABLE

The following stations will make 6-hourly upper-air observations when they are within 300 km of the centre of a tropical cyclone of TS intensity or higher:

Cambodia

China

(54):	857		
(57):	083,	494,	972
(58):	150,	457,	847
(59):	316,	758,	981

Democratic People's Republic of Korea

(47): 041, 058

Hong Kong, China

(45): 004 # radiosonde observations supplemented by wind profiler observations at 06 and 18 UTC when necessary

Japan

 (47):
 401, 412, 418, 582, 600, 646, 678, 741, 778, 807, 827, 909, 918, 945, 971*, 991*
 気象庁 12/13/10 4:49 PM

 beleted: 420
 12/13/10 4:49 PM

 beleted: 420
 12/13/10 4:49 PM

Lao People's Democratic Republic

Macao, China

Malaysia

(48): 601, 615, 650, 657 (96): 413, 441, 471, 481

Philippines

(98): 223, 433, 444, 618, 646, 573

Republic of Korea

(47): 090, 102, 122, 138, 158, 169, 185

Thailand

(48): 327, 407, <u>453</u>, 480, 500, 551, 565, 568

気象庁 12/27/10 2:30 PM Deleted: 455

Deleted: 744

Annex 1-4 APPENDIX 2-D, p.5

Name of the Member Japan - 2

NAME OF STATION		Tokyo /Kashiwa	Niigata /Yahikoyama	Fukui /Tojimbo	Nagano /Kurumayama	Shizuoka /Makinohara	
SPECIFICATIONS	Unit						
Index number		47695	47572	47705	47611	47659	
I a settion of station		35° 52′ N	37° 43′ N	36° 14′ N	36° 06′ N	34° 45′ N	
Location of station		139° 58′ E	138° 49′ E	136° 09′ E	138° 12′ E	138° 08′E	
Antenna elevation	m	74.0	645.0	107.0	1937.1	186.0	
Wave length	cm	5.59	5.61	5. <u>59</u>	5.64	5.66	
Peak power of transmitter	kW	250	250	250	250	250	気象庁 12/13/10 4:51 PM
Pulse length	μs	1.1/2.6	1.0/2.6	<u>1.1/</u> 2.7	2.6	2.6	Deleted: 68
Sensitivity minimum of receiver	dBm	-109/-113	-109/-113	-109/-113	-114	-113	与盘亡 40/40/40 4/54 DM
Beam width		1.0(H)	1.0(H)	1.1(H)	1.1(H)	1.0(H)	気象庁 12/13/10 4:51 PM Deleted: -112
(Width of over -3dB antenna gain of maximum)	deg	1.0(V)	1.0(V)	1. <u>0(</u> V)	1.1(V)	1.1(V)	_
Detection range	km	400	400	400	400	400	気象庁 12/13/10 4:51 PM Deleted: 1
Scan mode in observation 1.Fixed elevation 2.CAPPI 3.Manually		2	2	2	2	2	Dereteu. 1
DATA PROCESSING							
MTI processing 1.Yes, 2.No		1	1	1	1	1	
Doppler processing 1.Yes, 2.No		1	1	1	2	2	気象庁 12/13/10 4:51 PM
Display 1.Digital, 2.Analog		1	1	1	1	1	XIXIJ 12/15/10 4:51 PM Deleted: 2
OPERATION MODE (When trop) cyclone is within range of detection) 1.Hourly 2.3-hourly 3.Others	ical	1	1	1	1	1	
PRESENT STATUS 1.Operational 2.Not operational (for research etc.)		1	1	1	1	1	

APPENDIX 2-D, p.6

Name of the Member Japan - 3

NAME OF STATION		Nagoya	Osaka /Takayasuyama	Matsue /Misakayama	Hiroshima /Haigamine	Murotomisak
SPECIFICATIONS	Unit					•
Index number		47636	47773	47791	47792	47899
		35° 10′ N	34° 37′ N	35° 33′ N	34° 16′ N	33° 15′ N
Location of station		136° 58′ E	135° 39' E	133° 06′ E	132° 36′ E	134° 11′E
Antenna elevation	m	73.1	497.6	553.0	746.9	198.9
Wave length	cm	5.59	5.6 <u>1</u>	5.61	5. <u>59</u>	5.60
Peak power of transmitter	kW	250	250	250	250	250
Pulse length	μs	1.1/2.6	<u>1.0/2.6</u>	1.1/2.6	<u>1.1/2.7</u>	1.1/2.6
Sensitivity minimum of receiver	dBm	-108/-112	<u>-108/-112</u>	-109/-112	<u>-109/-111</u>	-109/-113
Beam width		1.0(H)	1. <u>1(</u> H)	1.0(H)	1. <u>1(</u> H)	1.0(H)
(Width of over -3dB antenna gain of maximum)	deg	1.0(V)	1. <u>1</u> (V)	1.1(V)	1.0(V)	1.0(V)
Detection range	km	400	400	400	400	400
Scan mode in observation 1.Fixed elevation 2.CAPPI 3.Manually controlled		2	2	2	2	2
DATA PROCESSING				11		1
MTI processing 1.Yes, 2.No	1	1	1	1	1	
Doppler processing 1.Yes, 2.No		1	1	1	1	1
Display 1.Digital, 2.Analog		1	1	1	1	1
OPERATION MODE (When tropic cyclone is within range of detection) 1.Hourly 2.3-hourly 3.Others	al	1	1	1	1	1
PRESENT STATUS 1.Operational 2.Not operational(for research etc.)		1	1	1	1	1

_	
3	気象庁 12/13/10 4:52 PM
נ	Deleted: 6
1	気象庁 12/13/10 4:53 PM
[Deleted: 66
1	気象庁 12/13/10 4:52 PM
[Deleted: 2.8
1	気象庁 12/13/10 4:53 PM
[Deleted: 2.8
1	気象庁 12/13/10 4:52 PM
C	Deleted: -113
1	気象庁 12/13/10 4:53 PM
0	Deleted: -112
1	気象庁 12/13/10 4:53 PM
[Deleted: 0
4	気象庁 12/13/10 4:54 PM
[Deleted: 0
4	気象庁 12/13/10 4:53 PM
Ľ	Deleted: 0
_	

気象庁 12/13/10 4:53 PM
Deleted: 2
気象庁 12/13/10 5:06 PM
Deleted: 2

APPENDIX 2-D, p.7

Name of the Member Japan - 4

NAME OF STATION		Fukuoka /Sefurisan	Tanegashima /Nakatane	Naze /Funchatoge	Naha /Itokazu	lshigakijima /Omotodake	
SPECIFICATIONS Unit							
Index number		47806	47869	47909	47937	47920	
		33° 26′ N	30° 38′ N	28° 24′ N	26° 09' N	24° 26′ N	
Location of station		130° 21' E	130° 59' E	129° 33' E	127° 46′ E	124° 11′E	
Antenna elevation	m	982.7	290.5	315.7	208.2	535.5	
Wave length	cm	5.60	5.60	5.66	5.60	<u>5.61</u>	
Peak power of transmitter	kW	250	250	250	250	250	
Pulse length	μs	1.1/2.7	1.1/2.7	2.6	1.0/2.5	<u>1.1/</u> 2.7	
Sensitivity minimum of receiver	dBm	-109/-112	-108/-112	-113	-109/-113	<u>-107/-111</u>	
Beam width		1.0(H)	1.1(H)	1.1(H)	1.0(H)	1.1(H)	
(Width of over -3dB antenna gain of maximum)	deg	1.0(V)	1.0(V)	1.0(V)	1.0(V)	1.1(V)	
Detection range	km	400	400	400	400	400	
Scan mode in observation 1.Fixed elevation 2.CAPPI 3.Manually		2	2	2	2	2	
Controlled DATA PROCESSING							
MTI processing 1.Yes, 2.No		1	1	1	1	1	
Doppler processing 1.Yes, 2.No Display 1.Digital, 2.Analog		1	1	2	1	1	
		1	1	1	1	1	
OPERATION MODE (When tropical cyclone is within range of detection) 1.Hourly 2.3-hourly 3.Others		1	1	1	1	1	
PRESENT STATUS 1.Operational 2.Not operational(for research etc.)		1	1	1	1	1	

気象庁 12/13/10 5:07 PM Deleted: 5.70

気象庁 12/13/10 5:07 PM **Deleted:** -113

気象庁 12/13/10 5:07 PM

Deleted: 2

				An	inex	1-5
			A	PPENDIX	2-D,	p.8
Name	of	the	Member	Масао,	Chin	a

NAME OF STATION		TAIPA GRANDE			
SPECIFICATIONS	Unit				
Index number		45011			
		22.1599N			
Location of station		113.5624E			
Antenna elevation	m	183			
Wave length	cm	3.4			
Peak power of transmitter	kW	200			気象庁 12/20/10 1:37 PM Deleted: 285714
Pulse length	μs	<u>0.4, 0.8, 1.0,</u> 2.0		 	
Sensitivity minimum of receiver	dBm	-113			気象庁 12/20/10 1:38 PM Deleted: 0.2, 0.5,
Beam width (Width of over -3dB antenna gain of maximum)	deg	1°			
Detection range	km	<u>128</u>			
Scan mode in observation					気象庁 12/20/10 1:38 PM
1. Fixed elevation					Deleted: 500 (reflection)
2. CAPPI		3			気象庁 12/20/10 1:38 PM
3. Manually controlled					Deleted: Others
DATA PROCESSING					
MTI processing		2			
1.Yes, 2.No		2			
Doppler processing		1			
1.Yes, 2.No					
Display 1.Digital, 2.Analog		1			
OPERATION MODE (When tropic	al				
cyclone is within range of detection)					
1. Hourly		3			
2. 3-hourly					
3. Others			 		4
PRESENT STATUS					
1.Operational		2			
2.Not operational (for research etc.)					J

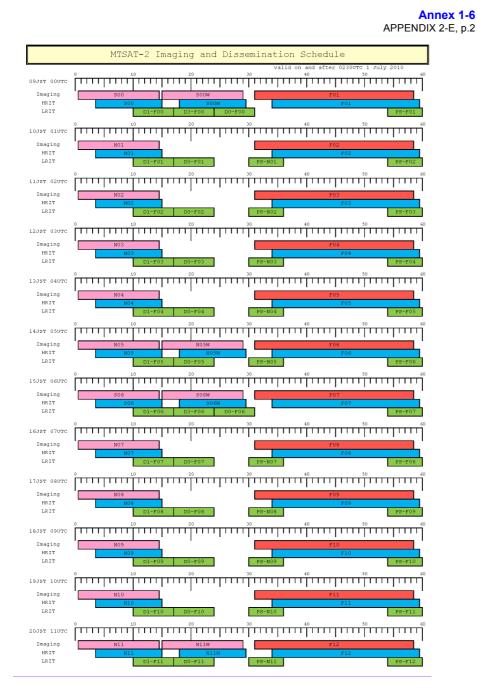
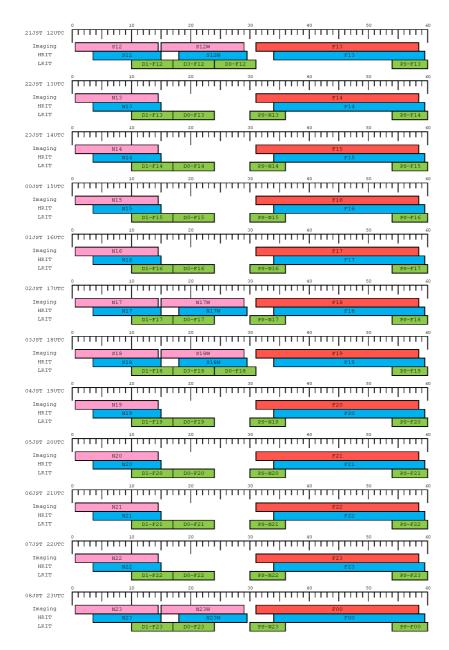



Figure 2-E.1 Time Table for Operation of MTSAT-2,(1/5)

気象庁 12/13/10 6:10 PM **Deleted:** 1R

APPENDIX 2-E, p.4

A. Notes

- This timetable is effective from 0230 UTC on 1 July 2010.
- For updated information on the dissemination timetable, please refer to MANAM, which is disseminated via MTSAT-1R and is also available on our web site.

Via MTSAT-1R

- HRIT: MANAM is sent along with imagery of N02 and N08 (shown as "N02" or "N08" on a sky-blue ground in the timetable) LRIT: MANAM is sent along with imagery of PS-N02 and PS-N08 (shown as "PS-N02" or "PS-N08" on a green ground in the timetable)

Website:

URL: http://mscweb.kishou.go.jp/operation/index.htm

Fig 2-E.1 Time Table for Operation of MTSAT-2,(3/5) 17

気象庁 12/13/10 6:<u>21 PM</u> Deleted: 1R

I

B. Legend

Observation (full disk/half disk) HRIT LRIT

C. Symbols

l

hh: hours in UTC

1. Observation

Symbol	Observation	Explanation of symbol
Fhh	Hourly full disk	F: hourly <u>F</u> ull-disk observation
Nhh	Hourly Northern Hemisphere	N: hourly Northern-hemisphere observation
NhhW		W: <u>W</u> ind extraction; S: <u>S</u> outhern-hemisphere observation. Every 6 hours (00, 06, 12, 18 UTC), two Northern-hemisphere and two Southern-
Shh	observations for	hemisphere observations will be performed before and after the full-disk observation
ShhW		respectively. As an example, observations for wind extraction around 12 UTC are N11, N11W, F12, S12 and S12W.

2. HRIT Dissemination

Symbol	Observation	Explanation of symbol
Fhh	Hourly full disk	F: hourly <u>F</u> ull-disk observation
Nhh	Hourly Northern Hemisphere	N: hourly <u>N</u> orthern-hemisphere observation
NhhW	Special	W: <u>W</u> ind extraction; S: <u>S</u> outhern-hemisphere observation. Every 6 hours (00, 06, 12, 18 UTC), two Northern-hemisphere and two Southern-
Shh	observations for	hemisphere observations will be performed before and after the full-disk observation respectively. As an example, observations for wind extraction around 12 UTC are N11,
ShhW	wind extraction	N11W, F12, S12 and S12W.

3. LRIT Dissemination

Symbol	Observation	Explanation of symbol
D1-Fhh		D1: Full- <u>D</u> isk imagery, Infrared-ch <u>1;</u> F: hourly Full-disk observation
D3-Fhh	Full disk	D3: Full- <u>D</u> isk imagery, Infrared-ch <u>3;</u> F: hourly Full-disk observation
PS-Fhh		PS: Polar-Stereographic imagery; F: hourly Full-disk observation; N: hourly Northern- hemisphere observation.
PS-Nhh	Northern Hemisphere	There are three different sets of polar-stereographic imagery covering East Asia, northeast Japan and southwest Japan.

Figure 2-E.1 Time Table for Operation of MTSAT-2 (4/5)

気象庁 12/13/10 6:23 PM Deleted: 1R

D. Data disseminated in LRIT

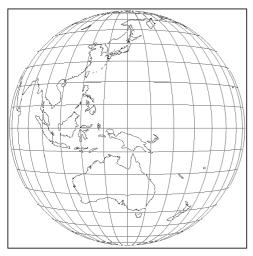
Imagery	Pola	ar-stered	graphic	project	ion <u>I[®]S-Fhh</u> /	PS-Nhh)		
		East	Asia		Northeast Japan	Southwest Japan	Full	disk
Observation	Visible	Infrared -ch1	Infrared -ch3	Infrared -ch4	Visible	Visible	Infrared-ch1 <u>D1-Fhh</u>)	Infrared-ch3 <u>D3-Fhh</u>)
F00	D	D	D		D	D	D	D
F01 N01	D D	D D	D D		D D	D D	D	
F02 N02	D	D	D		D	D	D	
F03	D	D	D		D	D	D	
N03 F04	D D	D D	D D		D D	D D	D	
N04 F05	D D	D D	D D		D D	D D	D	
N05 F06	D D	D D	D D		D D	D D	D	D
F07	D	D	D		D	D	D	
N07 F08	D D()	D D	D D	D)	D D()	D D	D	
N08 F09	DD) DD)	D D	D D	(D) (D)	10) 10)	10) 10)	D	
N09 F10	D)	D D	D D	D) D	D)	D)	D	
N10 F11		D D	D D	D D			D	
N11 F12		D D	D D	D D			D	D
F13		D	D	D			D	_
N13 F14		D	D	D			D	
N14 F15		D D	D D	D D			D	
N15 F16		D D	D D	D D			D	
N16		D	D	D				
F17 N17		D D	D	D			D	_
F18		D	D	D			D	D
F19 N19		D D	D D	D D			D	
F20 N20		D D	D D	D D			D	
F21 N21	10) 10)	D D	D D	DD) DD)	10) 10)	10) 10)	D	
F22 N22	(D) (D)	D D	D D	(D) (D)	D) D)	1D) 1D)	D	
F23 N23	DD	D	D D		D D	DD	D	

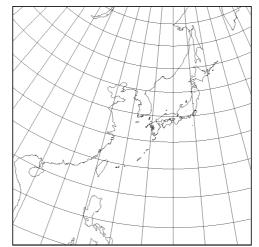
Legend

I

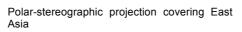
D: Dissemination

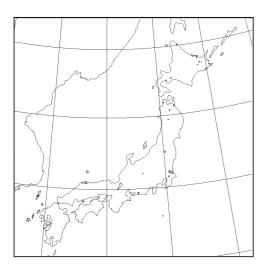
(D): Visible images are disseminated when the days are long enough, while infrared-ch4 images are disseminated when days are shorter. See MANAM for the latest information.

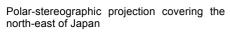

E. Observation channels of the MTSAT-1R imager

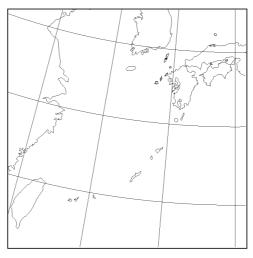

		-
Channel	Wavelength	
Infrared-		
ch1	10.3-11.3 µm	
ch2	11.5-12.5 µm	
ch3	6.5-7.0 µm	
ch4	3.5-4.0 µm	
Visible	0.55-0.90 µm	
Figure 2-E.1 Time	e Table for Operation	of MTSAT-2, (5/5)
-		

19


気象庁 12/13/10 6:22 PM Deleted: 1R


APPENDIX 2-E, p.7





Full earth's Disk of normalized geostationary projection

Polar-stereographic projection covering the south-west of Japan

Figure 2-E. 2 LRIT Images

Annex 1-7

APPENDIX 3-A, p1

OUTLINE OF RSMC TOKYO - TROPICAL CYCLONE PREDICTION MODELS

(a) Global Spectral Model (GSM-<u>1011</u>)

Data Assimilation:

- 4-D variational calculus (4D-VAR) with its own 3 to 9-hours prediction used as a first guess back ground (6-hours assimilation window)
- Data cut-off at 2.3 hours from synoptic time for prediction model, at $5.6 \sim 11.6$ hours from synoptic time for assimilation cycle
- Dynamic quality control considering temporal and spatial variabilities
- Reduced, Gaussian grid, roughly equivalent to 0.1875° x 0.1875° lat-lon,
- Model p-sigma hybrid levels (60) + surface (1)

(bogusing of tropical cyclones)

- Axis-symmetric structure based on Frank's (1977) empirical formula with parameters prescribed on forecasters' analysis mainly applying the Dvorak method to MTSAT imagery
- Asymmetric structure derived from first-guess field (prediction using GSM)
- Bogus structure is given as pseudo-observation data to the analysis for the prediction model

Operation:

(schedule)

Four times a day (0000, 0600, 1200 and 1800 UTC) (integration time)

84 hours from 0000, 0600 and 1800 UTC, and 216 hours from 1200 UTC

Prediction model:

(dynamics)

- Hydrostatic, primitive, semi-Lagrangian-form equations
- Semi-implicit time integration
- TL959 (~20km grid) spectral discretization in the horizontal direction
- Finite differencing on 60 p-sigma hybrid levels in the vertical direction
- Horizontal diffusion by linear second-order Laplacian

(physics)

- Arakawa-Schubert (1974) cumulus parameterization with modifications by Moorthi and
- Suarez (1992), Randall and Pan (1993) and Kuma and Cho (1994)
- Prognostic cloud water scheme by Smith (1990)
- Bulk formulae for surface fluxes with similarity functions by Louis (1982)
- Vertical diffusion with the level-2 closure model by Mellor and Yamada (1974) with moist effect included
- Gravity wave drag by Palmer et al. (1986) and Iwasaki et al. (1989)
- Simple Biospheric Model (SiB) by Sellers et al. (1986) and Sato et al. (1989a,b)

Boundary conditions:

(SST)

0.25° x 0.25° daily analysis with climatic seasonal trend

APPENDIX 3-A, p2

(b) Typhoon Ensemble Prediction System (TEPS)

21

気象庁 12/13/10 5:08 PM Deleted: 2 気象庁 12/13/10 5:08 PM

気象庁 12/13/10 5:08 PM

Deleted: 0711

Deleted: 2 気象庁 12/13/10 5:08 PM Deleted: 0.1875° x 0.1875° 気象庁 12/13/10 5:09 PM Deleted: (1920 x 960)

気象庁 12/13/10 5:09 PM Deleted: Initialization: -

気象庁 12/13/10 5:10 PM Deleted: - . Horizontal diffusion by linear second-order Laplacian 。

Initial condition:

Interpolation of the initial condition for GSM plus ensemble perturbations

Methods to make ensemble perturbations:

- Singular vector (SV) method
- Linearized model and its adjoint version based on those adopted in 4-D variational calculus, which consist of full dynamics of Eulerian integrations and full physical processes containing representations of vertical diffusion, gravity wave drag, large-scale condensation, long-wave radiation and deep cumulus convection
- T63 (~180 km grid) spectral discretization in the horizontal direction
- Finite differencing on 40 p-sigma hybrid levels in the vertical direction

Ensemble size:

11

Operation:

(schedule)

Four times a day (0000, 0600, 1200 and 1800 UTC),

- (tropical cyclone conditions that can trigger model prediction)
 - a tropical cyclone of TS intensity or higher exists in the area of responsibility (0°N 60°N, 100°E - 180°E)
 - a tropical cyclone is expected to reach TS intensity or higher in the area within the next 24 hours
 - a tropical cyclone of TS intensity or higher is expected to move into the area within the next 24 hours

(maximum number of predictions)

Three for each synoptic time (0000, 0600, 1200 and 1800 UTC)

(integration time)

132 hours

(domain) globe

(Prediction model)

- Lower-resolution version of the GSM
- TL319 (~55 km grid) spectral discretization in the horizontal direction
- Finite differencing on 60 p-sigma hybrid levels in the vertical direction

気象庁 12/13/10 5:10 PM **Deleted:** (to be determined)

気象庁 12/13/10 5:11 PM Deleted: Initialization:

Deleted: (to be determined)

Name of the MemberHong Kong, China

Item	Method	Type of output
Name of the method	Operational Regional Spectral Model (ORSM) Non-Hydrostatic Model (NHM)	Tropical cyclone position forecasts, surface and upper level prognoses up to 72 hours from
Description of the method	See Appendix 3-E	60-km ORSM and up to 42 hours from 20-km ORSM. Tropical cyclone forecast guidance bulletins based on the 60-km ORSM will be disseminated through the GTS when a tropical cyclone is within 10N to 30N and 105E to 125E. Development is underway to generate tropical cyclone forecast guidance bulletins based on 10-km NHM to replace ORSM products.

(2) Non-Hydrostatic Model (NHM)

Name of the method:

Non-Hydrostatic Model (NHM)

Description of the method:

HKO started to operate NHM system based on JMA-NHM (Saito *et al.* 2006) with horizontal resolution at 10-km and 2-km in June 2010 to provide forecasts up to 72 hours and 15 hours ahead respectively (Wong 2010). Development of TC track and intensity forecast products based on the 10-km NHM is underway to replace those from ORSM forecasts.

In NHM, a 3-dimensional variational data assimilation (3DVAR) system is used to generate the initial condition on model levels using the following meteorological observations:

(A)	GTS SYNOP, SHIP and BUOY TEMP and PILOT AMDAR and AIREP	synoptic stations, ship and buoy data radiosonde and pilot data aircraft data
	AMDAR and AIREP	atmospheric motion vectors from MTSAT-2/MTSAT-1R
	ATOVS	retrieved temperature profiles from NOAA

(B) Internet

(i) NCEP global high resolution daily sea surface temperature analysis at 0.083 degree resolution

(ii) Retrieved total precipitable water over ocean surface from SSM/I and AMSR-E

(C) Regional data exchange

Data from automatic weather stations over the south China coastal areas

(D) Local data

(i) Tropical cyclone bogus data based on forecasters' analysis during TC situations (ii) Automatic weather station data

- (iii) Wind profiler data
- (iv) Doppler weather radar data
- (v) GPS total precipitable water vapour

The 3DVAR analysis for 10-km NHM is produced eight times a day at 00, 03, 06, 09, 12, 15, 18, and 21 UTC. Hourly analysis is performed for the 2-km NHM.

Specifications of the forecast model are given in the following table:

Basic equations	Fully compressible non-hydrostatic governing equations
Vertical coordinates	Terrain following height coordinates system
Forecast parameters	wind (u,v,w), 3-dimensional pressure, potential temperature, specific humidity of water vapour, cloud water, cloud ice, rain water, hail/graupel and snow
Map projection	Mercator
Number of grid points	10-km NHM: 585x405, 50 levels
	2-km NHM: 305x305, 60 levels
Forecast range	10-km NHM: 72 hours
	2-km NHM: 15 hours
Initial condition	Analysis from NHM 3DVAR on model levels

APPENDIX 3-E, p.4

Boundary condition	For 10-km NHM, 3-hourly interval boundary data including horizontal wind, temperature, relative humidity, geopotential height and surface pressure from JMA Global Spectral Model forecast at horizontal resolution of 0.5 degree in latitude/longitude and on 21 pressure levels (1000, 975, 950, 925, 900, 850, 800, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa) For 2-km NHM, hourly interval boundary data provided from 10-km NHM forecasts
Nesting configuration	One-way nesting
Topography and land-use	USGS GTOPO30 (30 second data smoothed to 1.5 times of horizontal resolution) USGS Global Land Cover Characterization (GLCC) 30 second data
Dynamics	Non-hydrostatic governing equations solved by time-splitting horizontal-explicit-vertical-implicit (HEVI) scheme using 4-order centred finite difference in flux form
Moisture process	Kain-Fritsch convective parameterization (JMA-NHM version) Three ice bulk microphysics scheme
Surface process	Flux and bulk coefficients: Beljaars and Holtslag (1991) Stomatal resistance and temporal change of wetness included 4-layer soil model to predict ground temperature and surface heat flux.
Turbulence closure model and planetary boundary layer process	Mellor-Yamada-Nakanishi-Niino Level 3 (MYNN-3) (Nakanishi and Niino, 2004) with partial condensation scheme (PCS) and implicit vertical turbulent solver. Height of PBL calculated from virtual potential temperature profile.
Radiation	Long wave radiation process follows Kitagawa (2000) Short wave radiation process using Yabu and Kitagawa (2005) Prognostic surface temperature included; Cloud fraction determined from PCS.

Reference Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization and land surfaces in atmospheric models. J. Appl. Meteor., 30, 327-341.

Kitagawa, H., 2000: Radiation process. NPD Report No. 46, Numerical Prediction Division, JMA, 16-31. (in Japanese)

Nakanishi, M. and H. Niino, 2004: Improvement of the Mellor-Yamada level 3 model with condensation physics: Its de-sign and verification. *Bound.-Layer Meteor.*, **112**, 1-31.

Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The Operational JMA Nonhydrostatic Mesoscale Model. *Mon. Wea. Rev.*, **134**, 1266-1298.

Wong, W.K., 2010: Development of Operational Rapid Update Non-hydrostatic NWP and Data Assimilation Systems in the Hong Kong Observatory, *3rd International Workshop on Prevention and Mitigation of Meteorological Disasters in Southeast Asia*, 1-4 March 2010, Beppu, Japan. [Reprint available at http://www.hko.gov.hk/publica/reprint/r882.pdf]

Yabu, S., S. Murai, and H. Kitagawa, 2005: Clear-sky radiation scheme. *NPD Report No. 51*, Numerical Prediction Division, JMA, 53-64. (in Japanese)

MALAYSIA

WEATHER FORECAST AREAS

Annex 1-11 APPENDIX 5-C, p.1 COLLECTION AND DISTRIBUTION OF INFORMATION RELATED TO TROPICAL CYCLONES

	I		Receiving station										
Type of Data	He	ading	TD	BJ	BB	нн	MM	SL	NN	кк	IV	PP	MC
Type of Data	110	ading		00	00		IVIIVI	UL		INIX	IV		WO
Enhanced	SNCI30	BABJ	ВJ	0	BJ	BJ	TD	TD	BJ	BB	BB	BB	
surface	SNHK20	VHHH	НН	HH	BJ	0		TD	BB	BB	BB	BB	
observation	SNJP20	RJTD	0	TD	TD	TD		TD	BB	BB	BB	BB	
	SNKO20	RKSL	SL	TD	TD	TD		0	BB	BB	BB	BB	
	SNLA20	VLIV	BB	BB	IV				BB	BB	0	BB	
	SNMS20	WMKK	BB	BB	KK	BJ			BB	0	BB	BB	
	SNMU40	VMMC		MC	BJ	BJ		TD	BB	BB	BB	BB	0
	SNPH20	RPMM	MM	TD	TD	TD	0	TD	BB	BB	BB	BB	
	SNTH20	VTBB	BB	TD	0	TD		TD	BB	BB	BB	BB	
	SNVS20	VNNN	BB		NN	BJ			0	BB	BB	BB	
Enhanced	USCI01	BABJ	BJ	0	BJ	BJ	TD	TD	BJ	BB	BB	BB	
upper-air	USCI03	BABJ	BJ	0	BJ	BJ	TD	TD	BJ	BB	BB	BB	
observation	USCI05	BABJ	BJ	0	BJ	BJ	TD	TD	BJ	BB	BB	BB	
	USCI07	BABJ	BJ	0	BJ	BJ	TD	TD	BJ	BB	BB	BB	
	USCI09	BABJ	BJ	0	BJ	BJ	TD	TD	BJ	BB	BB	BB	
	UKCI01	BABJ	BJ	0	BJ	BJ		TD	BJ	BB	BB	BB	
	ULCI01	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
	ULCI03	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
	ULCI05	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
	ULCI07	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
				-									
	ULCI09	BABJ	ВJ	0	BJ	BJ		TD	BJ	BB	BB	BB	
	UECI01	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
	USHK01	VHHH	нн	HH	BJ	0	TD	TD	BB	BB	BB	BB	
	UKHK01	VHHH	нн	HH	BJ	0		TD	BB	BB	BB	BB	
	ULHK01	VHHH	HH	HH	BJ	0		TD	BB	BB	BB	BB	
	UEHK01	VHHH	HH	HH	BJ	0		TD	BB	BB	BB	BB	
	USJP01	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	UKJP01	RJTD	0	TD	TD	TD		TD	BB	BB	BB	BB	
	ULJP01	RJTD	0	TD	TD	TD		TD	BB	BB	BB	BB	
	UEJP01	RJTD	0	TD	TD	TD		TD	BB	BB	BB	BB	
	LIEKONA	DKC	C 1	TD	TD	TD	TD	0	00	00	pp	pp	
	USKO01 UKKO01	RKSL RKSL	SL SL	TD TD	TD TD	TD TD	TD	0	BB BB	BB BB	BB BB	BB BB	
	ULKO01	RKSL	SL	TD	TD	TD		0	BB	BB	BB	BB	
	UEKO01	RKSL	SL	TD	TD	TD		0	BB	BB	BB	BB	
	USMS01	WMKK	BB	TD	KK	TD	TD	TD	BB	0	BB	BB	
	03101301	WWWITCIC	DD	ID	IXIX	ΤD	10	10	DD	0	DD	DD	
	UKMS01	WMKK	BB	TD	кк	TD	TD	TD	BB	0	BB	BB	
	ULMS01	WMKK	BB	TD	KK	TD	TD	TD	BB	0	BB	BB	
	UEMS01	WMKK	BB	TD	KK	TD	TD	TD	BB	0	BB	BB	
	USPH01	RPMM	MM	TD	TD	TD	0	TD	BB	-	BB	BB	
	UKPH01	RPMM	MM	TD	TD	TD	0	TD	BB		BB	BB	
	ULPH01	RPMM	ММ	TD	TD	TD	0	TD	BB		BB	BB	
Continued to	UEPH01	RPMM	MM	TD	TD	TD	0	TD	BB		BB	BB	
the next page	USTH01	VTBB	BB	TD	0	TD	TD	TD	BB	BB	BB	BB	

APPENDIX 5-C, p.2

			Receiving station										
Type of Data	He	eading	TD	BJ	BB	нн	MM	SL	NN	KK	IV	PP	MC
Enhanced	UKTH01	VTBB	BB	TD	0	TD		TD	BB	BB	BB	BB	
Upper-air	ULTH01	VTBB	BB	TD	0	TD		TD	BB	BB	BB	BB	
observation	UETH01	VTBB	BB	TD	0	TD		TD	BB	BB	BB	BB	
	USVS01	VNNN	BB	TD	NN	TD	TD	TD	0	BB	BB	BB	
	UKVS01	VNNN	BB	TD	NN	TD		TD	0	BB	BB	BB	
	ULVS01	VNNN	BB	TD	NN	TD	TD	TD	0	BB	BB	BB	
	UEVS01	VNNN	BB	TD	NN	TD	TD	TD	0	BB	BB	BB	
	URPA10	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	URPA11	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	URPA12	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	URPA14	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	URPN10	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	UZPA13	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	UZPN13	KNHC	*		TD	TD		TD	BB	BB	BB	BB	
	UZPN13	KWBC	*	TD	TD	TD		TD	BB	BB	BB	BB	
	UZPN13	PGTW	*	TD	TD	TD		TD	BB	BB	BB	BB	
Enhanced	SNVB20	VTBB			ο				BB	BB	BB	BB	
ship	SNVB20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
observation	SNVD20	RJTD	õ	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVE20	RJTD	õ	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVX20	RJTD	õ	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	OIT VILLO	1010	Ŭ	10	10	10	10	10	66	66	00	00	
	SNVB21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVD21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVE21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVX21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVX20	RPMM	MM	TD	TD	TD	0	TD	BB		BB	BB	
	SNVX20	VHHH	нн	нн	BJ	0	TD	TD	BB	BB	BB	BB	
	SNVX20	VNNN	BB	TD	NN	TD		TD	0	BB	BB	BB	
Enhanced	SBCI30	BABJ	ВJ	ο	BJ	TD	TD	TD	BJ	BB	BB	BB	
radar	SCCI30	BABJ		õ	BJ	BJ	• =	• =	BB	BB	BB	BB	
observation	SBCI60	BCGZ		õ	BJ	20			BJ	BB	BB	BB	
	SCCI60	BCGZ	нн	o	BJ				BB	BB	BB	BB	
	SBHK20	VHHH	нн	нн	BJ	0	TD		BB	BB	BB	BB	
	ISBC01	VHHH	нн	нн	нн	0	TD	TD		BB	BB	BB	
	100001			TD	TD	TD	TD	TD					
	ISBC01 SDKO20	RJTD RKSL	0	TD	TD	TD	TD	TD O		BB	BB	BB	
	SDMS20	WMKK	BB	TD	KK	TD		2	BB	0	BB	BB	
	SDPH20	RPMM	ММ	TD	TD	0		TD	BB		BB	BB	
	SDTH20	VTBB	BB	TD	0	TD			BB	BB	BB	BB	
	SDVS20	VNNN	BB	TD	NN	TD	TD		0	BB	BB	BB	

気象庁 1/7/11 2:27 PM	١
Deleted: SBJP20	J
気象庁 1/7/11 2:27 PM	
Deleted: RJTD	J
気象庁 1/7/11 2:27 PM	Ì
Deleted: O	J
気象庁 1/7/11 2:27 PM	Ì
Deleted: TD	J
気象庁 1/7/11 2:27 PM	Ì
Deleted: TD	J
気象庁 1/7/11 2:27 PM	١
Deleted: TD	J
気象庁 1/7/11 2:27 PM	
Deleted: TD	J
気象庁 1/7/11 2:27 PM	
Deleted: TD	J
気象庁 1/7/11 2:27 PM	
Deleted: BB	J
気象庁 1/7/11 2:27 PM	
Deleted: BB	J
気象庁 1/7/11 2:27 PM	Ì
Deleted: BB	J
気象庁 1/7/11 2:27 PM	
Deleted: BB	J

APPENDIX 5-C, p.3

guidance TPI TPI TPI TPI UC Tropical FXI Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	Hez PPN10 PPA1 PPA1 PPA1 CCC10 KPQ01 KPQ02 KPQ03 KPQ20 KPQ20 KPQ20 KPQ24 KPQ24 KPQ25	Ading PGTW PGUA RJTY RODN RJTD VHHH VHHH VHHH VHHH RJTD RJTD RJTD RJTD PJTD	TD * * * * * * * * * * * * *	BJ TD TD TD TD TD HH HH HH TD	BB TD TD TD TD TD TD TD BJ BJ BJ BJ TD	HH TD TD TD TD TD TD TD O O O O TD	MM TD TD TD TD	SL TD	NN BB BB BB BB BB BB BB	KK BB BB BB BB BB BB BB BB BB	IV BB BB BB BB BB BB BB BB BB	PP BB BB BB BB BB BB BB BB BB	MC
guidance TPH TPH TPH TPH CPU Tropical FXI Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	PPN10 PPA1 PPA1 CCC10 CCC10 KPQ01 KPQ02 KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	PGUA RJTY RODN RJTD VHHH VHHH VHHH RJTD RJTD RJTD RJTD RJTD RJTD	• • • • • • • • • • • • • • • • • • •	TD TD HH HH HH TD TD	TD TD TD TD TD BJ BJ BJ BJ BJ	TD TD TD TD TD TD O O O O O O	TD TD TD		BB BB V V BB BB	BB BB BB BB BB BB	BB BB BB BB BB BB	BB BB BB BB BB BB	
guidance TPH TPH TPH TPH CPU Tropical FXI Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	PPN10 PPA1 PPA1 CCC10 CCC10 KPQ01 KPQ02 KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	PGUA RJTY RODN RJTD VHHH VHHH VHHH RJTD RJTD RJTD RJTD RJTD RJTD	• • • • • • • • • • • • • • • • • • •	TD TD HH HH HH TD TD	TD TD TD TD TD BJ BJ BJ BJ BJ	TD TD TD TD TD TD O O O O O O	TD TD TD		BB BB V V BB BB	BB BB BB BB BB BB	BB BB BB BB BB BB	BB BB BB BB BB BB	
Tropical FXI Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	PPA1 PPA1 PPA1 CC10 KPQ01 KPQ02 KPQ20 KPQ20 KPQ20 KPQ21 KPQ23 KPQ24	RJTY RODN RJTD VHHH VHHH VHHH RJTD RJTD RJTD RJTD RJTD RJTD	• • • • • • • • • • • • • • • • • • •	TD TD HH HH HH TD TD	TD TD TD TD BJ BJ BJ BJ BJ	TD TD TD TD O O O O O O	TD TD TD		BB BB V BB BB	BB BB BB BB BB	BB BB BB BB BB	BB BB BB BB BB	
Tropical FXI Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	CC10 KPQ01 KPQ02 KPQ20 KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	RODN RJTD VHHH VHHH VHHH RJTD RJTD RJTD RJTD RJTD RJTD RJTD	• • • • • • • • • • • • • • • • • • •	TD TD HH HH HH TD TD	TD TD TD BJ BJ BJ BJ BJ	TD TD TD O O O O O	TD TD TD		BB V BB BB	BB BB BB BB	BB BB BB BB	BB BB BB BB	
Tropical FXI Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	KPQ01 KPQ02 KPQ03 KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	RJTD VHHH VHHH VHHH RJTD RJTD RJTD RJTD RJTD RJTD	• • • • • • • • • • • • • •	TD HH HH HH TD TD	TD BJ BJ BJ BJ BJ	TD 0 0 0 0	TD		BB BB	BB BB BB	BB BB BB	BB BB BB	
Tropical FXI Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	KPQ01 KPQ02 KPQ20 KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	VHHH VHHH VHHH RJTD RJTD RJTD RJTD RJTD RJTD	нн нн нн о о	HH HH HH TD TD	BJ BJ BJ BJ	0 0 0			BB	BB BB	BB BB	BB BB	
Tropical FXI Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	KPQ01 KPQ02 KPQ20 KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	VHHH VHHH VHHH RJTD RJTD RJTD RJTD RJTD RJTD	нн нн нн о о	HH HH HH TD TD	BJ BJ BJ BJ	0 0 0			BB	BB BB	BB BB	BB BB	
Tropical FXI Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	KPQ01 KPQ02 KPQ20 KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	VHHH VHHH VHHH RJTD RJTD RJTD RJTD RJTD RJTD	нн нн нн о о	HH HH HH TD TD	BJ BJ BJ BJ	0 0 0			BB	BB BB	BB BB	BB BB	
Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	KPQ02 KPQ03 KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	VHHH VHHH RJTD RJTD RJTD RJTD RJTD RJTD	HH HH O O	HH HH TD TD	BJ BJ BJ	0 0 0	TD	TD	BB	BB	BB	BB	
Cyclone FXI Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	KPQ02 KPQ03 KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	VHHH VHHH RJTD RJTD RJTD RJTD RJTD RJTD	HH HH O O	HH HH TD TD	BJ BJ BJ	0 0 0	TD	TD	BB	BB	BB	BB	
Forecast FXI FXI FXI FXI FXI FXI FXI FXI FXI FXI	KPQ03 KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	VHHH VHHH RJTD RJTD RJTD RJTD RJTD	нн нн о о	нн нн тр тр	BJ BJ	0 0	TD	TD					
FXI FXI FXI FXI FXI FXI FXI FXI	KPQ20 KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	VHHH RJTD RJTD RJTD RJTD RJTD	нн О О О	HH TD TD	BJ	0	TD	TD	BB	BB			
FXI FXI FXI FXI FXI FXI FXI FXI	KPQ20 KPQ21 KPQ22 KPQ23 KPQ24	RJTD RJTD RJTD RJTD RJTD	0 0 0	TD TD			ID						
FXI FXI FXI FXI FXI FXI FXI	KPQ21 KPQ22 KPQ23 KPQ24	RJTD RJTD RJTD RJTD	0 0	TD	ID	ID	TD		BB	BB	BB	BB	
FXI FXI FXI FXI FXI FXI	KPQ22 KPQ23 KPQ24	RJTD RJTD RJTD	0				TD	TD	BB	BB	BB	BB	
FXI FXI FXI FXI FXI	KPQ23 KPQ24	RJTD RJTD		_	TD	TD	TD	TD	BB	BB	BB	BB	
FXI FXI FXI FXI	KPQ24	RJTD	· ·	TD	TD	TD	TD	TD	BB	BB	BB	BB	
FXI FXI FXI			0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
FXI FXI	KPQ25		0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
FX		RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	KPQ29	VTBB			0								
	KPH20	RPMM	ММ	TD	TD	TD	0	TD	BB	BB	BB	BB	
	KSS01	VHHH	нн	нн	BJ	0			BB	BB	BB	BB	
	KSS02	VHHH	нн	нн	BJ	0			BB	BB	BB	BB	
FXS	KSS03	VHHH	нн	нн	BJ	0			BB	BB	BB	BB	
FXS	KSS20	VHHH	нн	нн	BJ	0	TD	TD	BB	BB	BB	BB	
Warning WD	DPN31	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	DPN32	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	HCI28	BCGZ	HH	HH	BJ	BJ			BJ	BB	BB	BB	
	HCI40	BABJ	BJ	0	BJ	BJ			BJ	BB	BB	BB	
WS	SPH	RPMM	*	TD	TD	TD	0	TD	BB	BB	BB	BB	
wт	TMU40	VMMC	BJ	MC	BJ	BJ			BB	BB	BB	BB	0
WT	TPN21	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
WT	TPN31	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
WT	TPN32	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
WT	TPH20	RPMM	MM	TD	TD	TD	0		BB		BB	BB	
wt	TPH21	RPMM			TD		0		BB		BB	BB	
	TPQ20	VHHH	нн	НН	BJ	0	-	TD	BB	BB	BB	BB	
	TSS20	VHHH	нн	нн	BJ	õ		. 2	BB	BB	BB	BB	
	TTH20	VTBB	BB	TD	0	TD			BB	BB	BB	BB	
	TVS20	VNNN		. 2	NN	BJ			0	BB	BB	BB	
\٨/٣	TPQ20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	TPQ20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	TPQ21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	TPQ22	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	TPQ23	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	

Deleted: TCNA20
気象庁 1/7/11 2:24 PM
Deleted: RJTD
気象庁 1/7/11 2:24 PM
Deleted: O
気象庁 1/7/11 2:24 PM
Deleted: TD
気象庁 1/7/11 2:24 PM
Deleted: TD
気象庁 1/7/11 2:24 PM
Deleted: TD
気象庁 1/7/11 2:24 PM
Deleted: TD
気象庁 1/7/11 2:24 PM
Deleted: TD
気象庁 1/7/11 2:24 PM
Deleted: BB
Deleted: TCNA21
気象庁 1/7/11 2:24 PM
Deleted: RJTD
気象庁 1/7/11 2:24 PM
Deleted: O
Deleted: TD
気象庁 1/7/11 2:24 PM
Deleted: TD
気象庁 1/7/11 2:24 PM
Deleted: TD
気象庁 1/7/11 2:24 PM
Deleted: TD
気象庁 1/7/11 2:24 PM
Deleted: TD
気象庁 1/7/11 2:24 PM
Deleted: BB
Deleted: BB
気象庁 1/7/11 2:24 PM
Deleted: BB
気象庁 1/7/11 2:24 PM
Deleted: BB